
6-8 6-8.CS.1
Design modifications to computing 
devices in order to improve the ways 
users interact with the devices.

Computing devices can extend the 
abilities of humans, but design 
considerations are critical to make these 
devices useful. Students suggest 
modifications to the design of computing 
devices and describe how these 
modifications would improve usabilty.

For example, students could create a design 
for the screen layout of a smartphone that is 

more usable by people with vision impairments 
or hand tremors. They might also design how 
to use the device as a scanner to convert text 

to speech.

Alternatively, students could design 
modifications for a student ID card reader to 
increase usability by planning for scanner 

height, need of scanner device to be 
connected physically to the computer, 

robustness of scanner housing, and choice of 
use of RFID or line of sight scanners. (CA 

NGSS: MS-ETS1-1)

Computing Systems Devices Inclusion, Computational Problems 1.2, 3.3

6-8 6-8.CS.2
Design a project that combines 
hardware and software components 
to collect and exchange data.

Collecting and exchanging data involves 
input, output, storage, and processing. 
When possible, students select the 
components for their project designs by 
considering tradeoffs between factors 
such as functionality, cost, size, speed, 
accessibility, and aesthetics. Students 
do not need to implement their project 
design in order to meet this standard.

For example, students could design a mobile 
tour app that displays information relevant to 

specific locations when the device is nearby or 
when the user selects a virtual stop on the 
tour. They select appropriate components, 
such as GPS or cellular-based geolocation 

tools, textual input, and speech recognition, to 
use in their project design.



Alternatively, students could design a project 
that uses a sensor to collect the salinity, 

moisture, and temperature of soil. They may 
select a sensor that connects wirelessly 

through a Bluetooth connection because it 
supports greater mobility, or they could instead 
select a physical USB connection that does not 
require a separate power source. (CA NGSS: 

MS-ETS1-1, MS-ETS1-2)

Computing Systems Hardware & Software Creating 5.1

6-8 6-8.CS.3

Systematically apply troubleshooting 
strategies to identify and resolve 
hardware and software problems in 
computing systems.

When problems occur within computing 
systems, it is important to take a 
structured, step-by-step approach to 
effectively solve the problem and ensure 
that potential solutions are not 
overlooked. Examples of 
troubleshooting strategies include 
following a troubleshooting flow 
diagram, making changes to software to 
see if hardware will work, checking 
connections and settings, and swapping 
in working components. Since a 
computing device may interact with 
interconnected devices within a system, 
problems may not be due to the specific 
computing device itself but to devices 
connected to it.

For example, students could work through a 
checklist of solutions for connectivity problems 
in a lab of computers connected wirelessly or 

through physical cables. They could also 
search for technical information online and 

engage in technical reading to create 
troubleshooting documents that they then 

apply. (CA CCSS for ELA/Literacy RST.6-8.10)

Alternatively, students could explore and utilize 
operating system tools to reset a computer's 

default language to English.

Additionally, students could swap out an 
externally-controlled sensor giving fluctuating 
readings with a new sensor to check whether 

there is a hardware problem.

Computing Systems Troubleshooting Testing 6.2



6-8 6-8.NI.4
Model the role of protocols in 
transmitting data across networks 
and the Internet.

Protocols are rules that define how 
messages between computers are sent. 
They determine how quickly and 
securely information is transmitted 
across networks, as well as how to 
handle errors in transmission. Students 
model how data is sent using protocols 
to choose the fastest path and to deal 
with missing information. Knowledge of 
the details of how specific protocols 
work is not expected. The priority at this 
grade level is understanding the 
purpose of protocols and how they 
enable efficient and errorless 
communication.

For example, students could devise a plan for 
sending data representing a textual message 

and devise a plan for resending lost 
information.

Alternatively, students could devise a plan for 
sending data to represent a picture, and devise 
a plan for interpreting the image when pieces 

of the data are missing.

Additionally, students could model the speed of 
sending messages by Bluetooth, Wi-Fi, or 

cellular networks and describe ways errors in 
data transmission can be detected and dealt 

with.

Networks & the Internet Network Communication & 
Organization Abstraction 4.4

6-8 6-8.NI.5
Explain potential security threats 
and security measures to mitigate 
threats.

Cybersecurity is an important field of 
study and it is valuable for students to 
understand the need for protecting 
sensitive data. Students identify multiple 
methods for protecting data and 
articulate the value and appropriateness 
for each method. Students are not 
expected to implement or explain the 
implementation of such technologies.

For example, students could explain the 
importance of keeping passwords hidden, 

setting secure router administrator passwords, 
erasing a storage device before it is reused, 

and using firewalls to restrict access to private 
networks.



Alternatively, students could explain the 
importance of two-factor authentication and 
HTTPS connections to ensure secure data 

transmission.

Networks & the Internet Cybersecurity Computational Problems 3.1, 3.3

6-8 6-8.NI.6
Apply multiple methods of 
information protection to model the 
secure transmission of information.

Digital information is protected using a 
variety of cryptographic techniques. 
Cryptography is essential to many 
models of cybersecurity. At its core, 
cryptography has a mathematical 
foundation. Cryptographic encryption 
can be as simple as letter substitution or 
as complicated as modern methods 
used to secure networks and the 
Internet. Students encode and decode 
messages using encryption methods, 
and explore different levels of 
complexity used to hide or secure 
information.

For example, students could identify methods 
of secret communication used during the 

Revolutionary War (e.g., ciphers, secret codes, 
invisible ink, hidden letters) and then secure 

their own methods such as substitution ciphers 
or steganography (i.e., hiding messages inside 
a picture or other data) to compose a message 

from either the Continental Army or British 
Army. (HSS.8.1)

Alternatively, students could explore functions 
and inverse functions for encryption and 

decryption and consider functions that are 
complex enough to keep data secure from their 

peers. (CA CCSS for Mathematics 8.F.1)

Networks & the Internet Cybersecurity Abstraction 4.4

6-8 6-8.DA.7 Represent data in multiple ways.

Computers store data as sequences of 
0s and 1s (bits). Software translates to 
and from this low-level representation to 
higher levels that are understandable by 
people. Furthermore, higher level data 
can be represented in multiple ways, 
such as the digital display of a color and 
its corresponding numeric RGB value, 
or a bar graph, a pie chart, and table 
representation of the same data in a 
spreadsheet.



For example, students could use a color picker 
to explore the correspondence between the 
digital display or name of a color (high-level 
representations) and its RGB value or hex 

code (low-level representation).

Alternatively, students could translate a word 
(high-level representation) into Morse code or 
its corresponding sequence of ASCII codes 

(low-level representation).

Data & Analysis Storage Abstraction 4.4

6-8 6-8.DA.8
Collect data using computational 
tools and transform the data to make 
it more useful.

Data collection has become easier and 
more ubiquitous. The cleaning of data is 
an important transformation for ensuring 
consistent format, reducing noise and 
errors (e.g., removing irrelevant 
responses in a survey), and/or making it 
easier for computers to process. 
Students build on their ability to 
organize and present data visually to 
support a claim, understanding when 
and how to transform data so 
information can be more easily 
extracted. Students also transform data 
to highlight or expose relationships.

For example, students could use 
computational tools to collect data from their 

peers regarding the percentage of time 
technology is used for school work and 

entertainment, and then create digital displays 
of their data and findings. Students could then 

transform the data to highlight relationships 
representing males and females as 

percentages of a whole instead of as individual 
counts. (CA CCSS for Mathematics 6.SP.4, 7.

SP.3, 8.SP.1, 8.SP.4)

Alternatively, students could collect data from 
online forms and surveys, from a sensor, or by 
scraping a web page, and then transform the 

data to expose relationships. They could 
highlight the distribution of data (e.g., words on 
a web page, readings from a sensor) by giving 
quantitative measures of center and variability. 
(CA CCSS for Mathematics 6.SP.5.c, 7.SP.4)

Data & Analysis Collection Visualization & 
Transformation Communicating 7.1



6-8 6-8.DA.9
Test and analyze the effects of 
changing variables while using 
computational models.

Variables within a computational model 
may be changed, in order to alter a 
computer simulation or to more 
accurately represent how various data is 
related. Students interact with a given 
model, make changes to identified 
model variables, and observe and 
reflect upon the results.

For example, students could test a program 
that makes a robot move on a track by making 
changes to variables (e.g., height and angle of 

track, size and mass of the robot) and 
discussing how these changes affect how far 

the robot travels. (CA NGSS: MS-PS2-2)

Alternatively, students could test a game 
simulation and change variables (e.g., skill of 
simulated players, nature of opening moves) 
and analyze how these changes affect who 

wins the game. (CA NGSS: MS-ETS1-3)

Additionally, students could modify a model for 
predicting the likely color of the next pick from 
a bag of colored candy and analyze the effects 

of changing variables representing the 
common color ratios in a typical bag of candy. 

(CA CCSS for Mathematics 7.SP.7, 8.SP.4)

Data & Analysis Inference & Models Abstraction, Testing 4.4, 6.1

6-8 6-8.AP.10
Use flowcharts and/or pseudocode 
to design and illustrate algorithms 
that solve complex problems.

Complex problems are problems that 
would be difficult for students to solve 
without breaking them down into 
multiple steps. Flowcharts and 
pseudocode are used to design and 
illustrate the breakdown of steps in an 
algorithm. Students design and illustrate 
algorithms using pseudocode and/or 
flowcharts that organize and sequence 
the breakdown of steps for solving 
complex problems.

For example, students might use a flowchart to 
illustrate an algorithm that produces a 

recommendation for purchasing sneakers 
based on inputs such as size, colors, brand, 

comfort, and cost.



Alternatively, students could write pseudocode 
to express an algorithm for suggesting their 

outfit for the day, based on inputs such as the 
weather, color preferences, and day of the 

week.

Algorithms & Programming Algorithms Abstraction 4.4, 4.1

6-8 6-8.AP.11
Create clearly named variables that 
store data, and perform operations 
on their contents.

A variable is a container for data, and 
the name used for accessing the 
variable is called the identifier. Students 
declare, initialize, and update variables 
for storing different types of program 
data (e.g., text, integers) using names 
and naming conventions (e.g. camel 
case) that clearly convey the purpose of 
the variable, facilitate debugging, and 
improve readability.

For example, students could program a quiz 
game with a score variable (e.g. quizScore) 
that is initially set to zero and increases by 

increments of one each time the user answers 
a quiz question correctly and decreases by 

increments of one each time a user answers a 
quiz question incorrectly, resulting in a score 

that is either a positive or negative integer. (CA 
CCSS for Mathematics 6.NS.5)

Alternatively, students could write a program 
that prompts the user for their name, stores the 
user's response in a variable (e.g. userName), 

and uses this variable to greet the user by 
name.

Algorithms & Programming Variables Creating 5.1, 5.2

6-8 6-8.AP.12

Design and iteratively develop 
programs that combine control 
structures and use compound 
conditions.

Control structures can be combined in 
many ways. Nested loops are loops 
placed within loops, and nested 
conditionals allow the result of one 
conditional to lead to another. 
Compound conditions combine two or 
more conditions in a logical relationship 
(e.g., using AND, OR, and NOT). 
Students appropriately use control 
structures to perform repetitive and 
selection tasks.

For example, when programming an interactive 
story, students could use a compound 

conditional within a loop to unlock a door only if 
a character has a key AND is touching the 
door. (CA CCSS for ELA/Literacy W.6.3, W.

7.3, W.8.3)



Alternatively, students could use compound 
conditionals when writing a program to test 

whether two points lie along the line defined by 
a particular linear function. (CA CCSS for 

Mathematics 8.EE.7)

Additionally, students could use nested loops 
to program a character to do the "chicken 
dance" by opening and closing the beak, 
flapping the wings, shaking the hips, and 

clapping four times each; this dance "chorus" 
is then repeated several times in its entirety.

Algorithms & Programming Control Creating 5.1, 5.2

6-8 6-8.AP.13

Decompose problems and 
subproblems into parts to facilitate 
the design, implementation, and 
review of programs.

Decomposition facilitates program 
development by allowing students to 
focus on one piece at a time (e.g., 
getting input from the user, processing 
the data, and displaying the result to the 
user). Decomposition also enables 
different students to work on different 
parts at the same time. Students break 
down (decompose) problems into 
subproblems, which can be further 
broken down to smaller parts.

Students could create an arcade game, with a 
title screen, a game screen, and a win/lose 

screen with an option to play the game again. 
To do this, students need to identify 

subproblems that accompany each screen (e.
g., selecting an avatar goes in the title screen, 

events for controlling character action and 
scoring goes in the game screen, and 

displaying final and high score and asking 
whether to play again goes in the win/lose 

screen).

Alternatively, students could decompose the 
problem of calculating and displaying class 
grades. Subproblems might include: accept 

input for students grades on various 
assignments, check for invalid grade entries, 
calculate per assignment averages, calculate 
per student averages, and display histograms 
of student scores for each assignment. (CA 

CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.
5)

Algorithms & Programming Modularity Computational Problems 3.2



6-8 6-8.AP.14
Create procedures with parameters 
to organize code and make it easier 
to reuse.

Procedures support modularity in 
developing programs. Parameters can 
provide greater flexibility, reusability, 
and efficient use of resources. Students 
create procedures and/or functions that 
are used multiple times within a program 
to repeat groups of instructions. They 
generalize the procedures and/or 
functions by defining parameters that 
generate different outputs for a wide 
range of inputs.

For example, students could create a 
procedure to draw a circle which involves 
many instructions, but all of them can be 

invoked with one instruction, such as 
“drawCircle.” By adding a radius parameter, 
students can easily draw circles of different 

sizes. (CA CCSS for Mathematics 7.G.4)

Alternatively, calculating the area of a regular 
polygon requires multiple steps. Students 

could write a function that accepts the number 
and length of the sides as parameters and then 

calculates the area of the polygon. This 
function can then be re-used inside any 

program to calculate the area of a regular 
polygon. (CA CCSS for Mathematics 6.G.1)

Algorithms & Programming Modularity Abstraction 4.1, 4.3

6-8 6-8.AP.15
Seek and incorporate feedback from 
team members and users to refine a 
solution that meets user needs.

Development teams that employ user-
centered design processes create 
solutions (e.g., programs and devices) 
that can have a large societal impact (e.
g., an app that allows people with 
speech difficulties to allow a smartphone 
to clarify their speech). Students begin 
to seek diverse perspectives throughout 
the design process to improve their 
computational artifacts. Considerations 
of the end-user may include usability, 
accessibility, age-appropriate content, 
respectful language, user perspective, 
pronoun use, or color contrast.



For example, if students are designing an app 
to teach their classmates about recycling, they 
could first interview or survey their classmates 
to learn what their classmates already know 
about recycling and why they do or do not 

recycle. After building a prototype of the app, 
the students could then test the app with a 
sample of their classmates to see if they 

learned anything from the app and if they had 
difficulty using the app (e.g., trouble reading or 
understanding text). After gathering interview 
data, students could refine the app to meet 
classmate needs. (CA NGSS: MS-ETS1-4)

Algorithms & Programming Program Development Collaborating, Inclusion 2.3, 1.1

6-8 6-8.AP.16
Incorporate existing code, media, 
and libraries into original programs, 
and give attribution.

Building on the work of others enables 
students to produce more interesting 
and powerful creations. Students use 
portions of code, algorithms, digital 
media, and/or data created by others in 
their own programs and websites. They 
give attribution to the original creators to 
acknowledge their contributions.

For example, when creating a side-scrolling 
game, students may incorporate portions of 
code that create a realistic jump movement 
from another person's game, and they may 

also import Creative Commons-licensed 
images to use in the background.

Alternatively, when creating a website to 
demonstrate their knowledge of historical 

figures from the Civil War, students may use a 
professionally-designed template and public 
domain images of historical figures. (HSS.

8.10.5)

Additionally, students could import libraries and 
connect to web application program interfaces 

(APIs) to make their own programming 
processes more efficient and reduce the 

number of bugs (e.g., to check whether the 
user input is a valid date, to input the current 

temperature from another city).

Algorithms & Programming Program Development Abstraction, Creating, Communicating 4.2, 5.2, 7.3



6-8 6-8.AP.17
Systematically test and refine 
programs using a range of test 
cases.

Use cases and test cases are created to 
evaluate whether programs function as 
intended. At this level, students develop 
use cases and test cases with teacher 
guidance. Testing should become a 
deliberate process that is more iterative, 
systematic, and proactive than at lower 
levels.

For example, students test programs by 
considering potential errors, such as what will 

happen if a user enters invalid input (e.g., 
negative numbers and 0 instead of positive 

numbers).

Alternatively, in an interactive program, 
students could test that the character cannot 

move off of the screen in any direction, cannot 
move through walls, and can interact with other 

characters. They then adjust character 
behavior as needed.

Algorithms & Programming Program Development Testing 6.1

6-8 6-8.AP.18
Distribute tasks and maintain a 
project timeline when collaboratively 
developing computational artifacts.

Collaboration is a common and crucial 
practice in programming development. 
Often, many individuals and groups 
work on the interdependent parts of a 
project together. Students assume pre-
defined roles within their teams and 
manage the project workflow using 
structured timelines. With teacher 
guidance, they begin to create collective 
goals, expectations, and equitable 
workloads.

For example, students could decompose the 
design stage of a game into planning the 

storyboard, flowchart, and different parts of the 
game mechanics. They can then distribute 

tasks and roles among members of the team 
and assign deadlines.

Alternatively, students could work as a team to 
develop a storyboard for an animation 

representing a written narrative, and then 
program the scenes individually. (CA CCSS for 

ELA/Literacy W.6.3, W.7.3, W.8.3)

Algorithms & Programming Program Development Collaborating, Creating 2.2, 5.1

6-8 6-8.AP.19
Document programs in order to 
make them easier to use, read, test, 
and debug.



Documentation allows creators, 
end users, and other 

developers to more easily use 
and understand a program. 

Students provide 
documentation for end users 

that explains their artifacts and 
how they function (e.g., project 

overview, user instructions). 
They also include comments 

within code to describe portions 
of their programs and make it 

easier for themselves and other 
developers to use, read, test, 

and debug.

For example, students could add comments to 
describe functionality of different segments of 
code (e.g., input scores between 0 and 100, 
check for invalid input, calculate and display 
the average of the scores). They could also 
communicate the process used by writing 
design documents, creating flowcharts, or 

making presentations. (CA CCSS for 
ELA/Literacy SL.6.5, SL.7.5, SL.8.5)

Algorithms & Programming Program Development Communicating 7.2

6-8 6-8.IC.20

Compare tradeoffs associated with 
computing technologies that affect 
people's everyday activities and 
career options.

Advancements in computer technology 
are neither wholly positive nor negative. 
However, the ways that people use 
computing technologies have tradeoffs. 
Students consider current events related 
to broad ideas, including privacy, 
communication, and automation.

For example, students could compare and 
contrast the impacts of computing technologies 

with the impacts of other systems developed 
throughout history such as the Pony Express 

and US Postal System. (HSS.7.8.4)

Alternatively, students could identify tradeoffs 
for both personal and professional uses of a 

variety of computing technologies. For 
instance, driverless cars can increase 

convenience and reduce accidents, but they 
may be susceptible to hacking. The emerging 

industry will reduce the number of taxi and 
shared-ride drivers, but may create more 

software engineering and cybersecurity jobs.

Impacts of Computing Culture Communicating 7.2



6-8 6-8.IC.21
Discuss issues of bias and 
accessibility in the design of existing 
technologies.

Computing technologies should support 
users of many backgrounds and 
abilities. In order to maximize 
accessiblity, these differences need to 
be addressed by examining diverse 
populations. With the teacher's 
guidance, students test and discuss the 
usability of various technology tools, 
such as apps, games, and devices.

For example, students could discuss the 
impacts of facial recognition software that 

works better for lighter skin tones and 
recognize that the software was likely 

developed with a homogeneous testing group. 
Students could then discuss how accessibility 

could be improved by sampling a more diverse 
population. (CA CCSS for ELA/Literacy SL.6.1, 

SL.7.1, SL.8.1)

Impacts of Computing Culture Inclusion 1.2

6-8 6-8.IC.22
Collaborate with many contributors 
when creating a computational 
artifact.

Users have diverse sets of experiences, 
needs, and wants. These need to be 
understood and integrated into the 
design of computational artifacts. 
Students use applications that enable 
crowdsourcing to gather services, ideas, 
or content from a large group of people. 
At this level, crowdsourcing can be done 
at the local level (e.g., classroom, 
school, or neighborhood) and/or global 
level (e.g., age-appropriate online 
communities).

For example, a group of students could use 
electronic surveys to solicit input from their 

neighborhood regarding an important social or 
political issue. They could collaborate with a 
community artist to combine animations and 
create a digital community collage informing 

the public about various points of view 
regarding the topic. (VAPA Visual Art 8.5.2, 

8.5.4)

Impacts of Computing Social Interactions Collaborating, Creating 2.4, 5.2



6-8 6-8.IC.23

Compare tradeoffs associated with 
licenses for computational artifacts 
to balance the protection of the 
creators' rights and the ability for 
others to use and modify the 
artifacts.

Using and building on the works of 
others allows people to create 
meaningful works and fosters 
innovation. Copyright is an important 
law that helps protect the rights of 
creators so they receive credit and get 
paid for their work. Creative Commons 
is a kind of copyright that makes it 
easier for people to copy, share, and 
build on creative work, as long as they 
give credit for it. There are different 
kinds of Creative Commons licenses 
that allow people to do things such as 
change, remix, or make money from 
their work. As creators, students can 
pick and choose how they want their 
work to be used, and then create a 
Creative Commons license that they 
include in their work.

For example, students could create interactive 
animations to educate others on bullying or 

protecting the environment. They then select 
an appropriate license to reflect how they want 
their program to be used by others (e.g., allow 
others to use their work and alter it, as long as 
they do not make a profit from it). Students use 

established methods to both protect their 
artifacts and attribute use of protected artifacts.

Impacts of Computing Safety Law & Ethics Communicating 7.3

6-8 6-8.IC.24
Compare tradeoffs between allowing 
information to be public and keeping 
information private and secure.

While it is valuable to establish, 
maintain, and strengthen connections 
between people online, security attacks 
often start with intentionally or 
unintentionally providing personal 
information online. Students identify 
situations where the value of keeping 
information public outweighs privacy 
concerns, and vice versa. They also 
recognize practices such as phishing 
and social engineering and explain best 
practices to defend against them.

For example, students could discuss the 
benefits of artists and designers displaying 

their work online to reach a broader audience. 
Students could also compare the tradeoffs of 

making a shared file accessible to anyone 
versus restricting it to specific accounts. (CA 

CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)



Alternatively, students could discuss the 
benefits and dangers of the increased 

accessibility of information available on the 
internet, and then compare this to the 
advantages and disadvantages of the 

introduction of the printing press in society. 
(HSS.7.8.4)

Impacts of Computing Safety Law & Ethics Communicating 7.2


